
Bootstrapping a real working design flow

Tim Edwards efabless.com
Open Circuit Designefabless

FOSSi foundation WOSH 2019 ZürichJune 14, 2019

opencircuitdesign.com

Origins of qflow

Started with simple scripts around Berkeley VIS and SIS, used at
MultiGiG, Inc., around 2007 for "small digital" blocks (a few hundred gates
at most) (thank you to Steve Beccue for the original scripts behind qflow).

TimberWolf (Bill Swartz, Yale; pulled from Octtools) used for placement. Last
open source version of TimberWolf before it became proprietary (thank you
to Mark Martin for dredging up Octtools from a backup tape somewhere).

Proprietary detail router lithoroute (Frank Lien) used at MultiGiG, only part of
flow not open source (2008).

After sale of MultiGiG to Analog Devices, wrote the open source detail router
qrouter to replace the proprietary router (version 1.0, 2011).

Used OSU (Oklahoma State) open source standard cells in distribution (thank
you to James Stine)

Bootstrapping a real working design flow

qflow History of qflow (major milestones)

Replaced VIS/SIS with Odin II as synthesis front-end (July 2013)

Wrote open-source detail router qrouter in 2011

Implemented clock tree synthesis blifFanout in 2012

Updated to use yosys (Clifford Wolf) / ABC (Alan Mischenko) (October 2013)

Cleaned up the scripts, added a Makefile, and qflow was born (June 2013)

graywolf forked from TimberWolf (October 2014) by Ruben Undheim

Wrote vesta static timing analysis tool (October 2013)

qflow_manager.py GUI interface added (April 2018)

Performance improvements: 100s of gates (2008) to 1000s of gates (2012),
to 10000s of gates (2017)

qflow 1.4
Flow is driven by scripts.
project_vars.sh declares options
qflow_exec.sh enumerates steps

File directory structure includes "source" directory for input files,
"synthesis" for netlist output, "layout" for final results of placement
and routing, "log" for reports and "netlist" for LVS results.

project root/

source/ synthesis/ layout/

netlist/log/

project_vars.sh

qflow_exec.sh

qflow_vars.sh

project .rtl.v

Project directory tree:

project .v
project. xspice

project .cel
project .def
project .mag
project .gds

project .spice
yosys.log

graywolf.log
qrouter.log¼

qflow 1.4 The underlying scripting flow

Command line use (after setup): qflow [option ...] e.g., : qflow synthesize place route

verilog netlist

Yosys/ABC

vlogFanout

Synthesis

verilog netlist

Placement

vlog2cel

.cel input for graywolf

.def netlist

vlog2def

verilog
source
file(s)

.cel2 pin
placement

hints

place2def.tcl

.def netlist

addspacers

arrangepins

graywolf

.pl1, .pl2, .pin

.lib liberty
timing
files

.lef standard
cell library

.def netlist

vlog2Verilog

vlog2Spice

spi2xspice.py

decongest.tcl

verilog netlist

SPICE netlist

XSPICE netlist

verilog netlist

.def netlist

Static Timing Analysis

.lib liberty
timing
files

Routing

Qrouter

.def netlist

DEF2Verilog

verilog netlist

.rc timing

vesta

text file output

project_vars.sh
setup file

.lef standard
cell library

.v

.def

.v .def

.rc

.v

.v

qflow 1.4 The underlying scripting flow (continued)

Command line use (after setup): qflow [option ...] e.g., : qflow synthesize place route

Post-Route
Static Timing Analysis

.lib liberty
timing
files

Migration

rc2dly

.spef, .sdf timing

vesta

text file output

DRC

LVS

GDS Generation

Magic

text file report

text file report

Netgen

Magic

.ext extraction

SPICE netlist

.mag layout

.lef abstract view

Magic

.gds mask layout

setup.tcl
netgen
setup

GDS standard
cell library

project_vars.sh
setup file

.tech magic
techfile

.rc

.v

.def

.mag

.spc

qflow

qflow GUI simplifies the process of digital synthesis and replaces hand-editing
script files and incorporates LVS and DRC checks, and GDS generation.

Selection of
technology

Select top level
module for
synthesis

Execute each step of
the flow by clicking on
the "Run" button.

When "Run" is boldface,
this is the next step in
the synthesis sequence.

Before running each step, select options
from the settings that appear in the window
to the right. Each synthesis step has its
own set of options. Click on "Settings" to
see them.

After each step, click on
the first column to see
results (contents of a
log file).

GUI (Python/Tkinter)

qflow

Preparation step:
File systems are created
and managed automatically

Begin: Make directory for
project and put verilog
source files(s) in it.

Then run:

qflow gui project_name

Project workspace preparation

New feature:
tool selection

qflow Synthesis using Yosys / ABC

Qflow automatically finds the
verilog module hierarchy and
includes all source files.

qflow Post-synthesis steps

Resize gates to optimize for speed

Add buffers at input and/or output

Add antenna tie-downs to inputs

Break up large fanouts by buffering

Generate clock tree(s) with unsorted (permutable) connections

Assign fill cells (spacers, decap, and/or antenna tie-downs) to reduce density

qflow

Placement settings:

Standard cell density (vs. fill)

Layout aspect ratio

Pin arrangement

Power bus striping

Placement setup

qflow Pin placement hints

Pins can be grouped and required to be on one (or more) sides of the layout.
Signal vectors can be automatically grouped.

Groups can be limited to a range of area
along the side of the layout.

Pin arrangement GUI replaces the (obscure) hand-edited .cel2 file.

qflow Placement with graywolf

Minimizes routing wire length

Positions pins according to hints
and minimum wire length

Sorts clock tree (and other fanout-
reducing) buffers for optimal routing

Simulated annealing algorithm

qflow

Abstract view of digital cells using
information from standard cell LEF
macro file.

Power buses have been placed and
routed.

Fill cells have been added.

Post-placement steps

Pins aligned to routing grid and fenced.

qflow Placement with OpenRoad RePlAce1.4

Work in progressÐclock tree synthesis
not yet integrated.

Analytical placement much faster than
simulated annealing

So far integrated with addspacers tools
and pin arranger script.

qflow Static timing analysis using vesta

Reports initial maximum
clock rate (without back-
annotated parasitics).

Standard report
showing the
combinational
chain for each
delay path.

qflow Detailed routing with qrouter

Qrouter graphic view
Router analyzes antenna violations, makes
corrections, and extracts parasitic delays.

Lee algorithm maze router with masking

qflow Detailed routing with qrouter

Lee algorithm maze router with masking

Tree-and-branch structure masks make the Lee algorithm much faster,
more efficient, and produces better route solutions.

qflow Static timing analysis with backannotated
parasitic data, using vesta

Updated maximum
clock frequency
(0.64% slower)

qflow Migration

Create layout database for Magic

Create netlists for Netgen LVS

Create functional netlist for
simulation at gate level using
xspice

Create LEF file (abstract view)
from layout

qflow DRC with Magic layout

For well-behaved standard cells
such as the OSU sets, DRC and
LVS are generally guaranteed by
design.

For foundry standard cells with
more agressive layouts, DRC
errors are common and
occasionally cause shorts that
result in LVS failure.

The Magic layout editor can be
used to resolve layout issues.

qflow

Click on LVS status button to get LVS report from Netgen:

LVS with Netgen

Device network matching (such
as resistor networks)

Hierarchical matching

Pin matching

Property checking and matching

Full setup control over parallel and
serial combining, properties, etc.

qflow

GDS generation is automatic with
Magic layout editor tech file.

Transistor-level view of digital cells
using information from standard
cell GDS file.

Click on "Edit Layout" after GDS step
to see complete routed layout
imported from the GDS file:

End-to-end synthesis finished!

GDS Generation with Magic

qflow Made with qflow: The efabless Raven chip

picoRV32 RISC-V reference
design (Clifford Wolf)

Process: X-Fab XH018
6 layers metal

SoC core synthesized, placed,
and routed with qflow

22,400 standard cells (excluding
fill) (not pushing qflow's limits)

Taped-out August 2018

SoC core area ~800 × 800 µm

Packaged January 2019

First time working silicon!

qflow Recent development work

Integrated OpenTimer as (more full-featured) alternative to vesta

Integration of OpenRoad (UCSD): OpenSTA, RePlAce

Move from BLIF netlist format to all verilog netlists

Some major housekeeping functions moved from scripts to executables

"auto_pdks" framework for generating compatible techfile hierarchies

Floorplanner/Padframe generator (based on Symbiotic EDA "padring")

All qflow tools mirrored to github (https://github.com/RTimothyEdwards/)

Floorplanner / Padframe Generator

Uses Symbiotic EDA padring https://github.com/YosysHQ/padring
· Input is a chip top-level verilog netlist.
· The script separates the I/O pads from the core components.
· Pads always snap to valid frame positions.
· Core components can be moved around arbitrarily.
· The padframe expands as needed to accomodate the core.

Layout generated
from ªSaveº button

Core cells can
be positioned
and rotated
arbitrarily

Pad cells always
remain in valid
padframe
positions

Auto-PDKS

Foundry Data

Liberty
LEF
GDS

CDL/SPICE
Verilog
Documentation

Standard Formats

Custom Data

Magic techfile (.tech)

Digital Standard Cells

Primitive Devices

I/O Cells
Analog IP

Memory IP

Netgen setup file (.tcl)

Qflow setup file (.sh)

Magic PDK (.tcl)

Graywolf setup file (.par)

Magic startup script (.magicrc)

Makefile

FEOL/BEOL Options

Libraries

Templates

Installed PDKs

technology_root/

foundry1/ ¼

libs.tech/ libs.ref/

mag/

maglef/

lef/

lef/
liberty/
verilog/

magic/

netgen/

qflow/

foundry2/ ¼

gds/

spi/

qflow (Near-term) Future development work

Qflow and all the tools it comprises are always free and open source!

Thank you for supporting open source EDA tool development!

Continued integration of OpenRoad (TritonCTS, global and detail routers)

DFT (scan chain insertion)

